
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2001; 35: 319–340

On the efficiency of semi-implicit and semi-Lagrangian
spectral methods for the calculation of incompressible

flows

Chuanju Xua,1 and Richard Pasquettib,*,2

a Department of Mathematics, Xiamen Uni6ersity, Xiamen 361005, Fujian, People’s Republic of China
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SUMMARY

Classical semi-implicit backward Euler/Adams–Bashforth time discretizations of the Navier–Stokes
equations induce, for high-Reynolds number flows, severe restrictions on the time step. Such restrictions
can be relaxed by using semi-Lagrangian schemes essentially based on splitting the full problem into an
explicit transport step and an implicit diffusion step. In comparison with the standard characteristics
method, the semi-Lagrangian method has the advantage of being much less CPU time consuming where
spectral methods are concerned. This paper is devoted to the comparison of the ‘semi-implicit’ and
‘semi-Lagrangian’ approaches, in terms of stability, accuracy and computational efficiency. Numerical
results on the advection equation, Burger’s equation and finally two- and three-dimensional Navier–
Stokes equations, using spectral elements or a collocation method, are provided. Copyright © 2001 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

In spectral simulations of incompressible viscous flows, the linear terms are often treated
implicitly and the non-linear convective term explicitly, to obtain a linear system in space after
the time discretization. However, such semi-implicit treatments have generally severe stability
restrictions on the time step when high-Reynolds number flows are computed. Another
popular approach for the treatment of the convective term is the characteristics method (see,
for example, References [1–4]), sometimes termed as ‘transport+diffusion algorithm’. It
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consists of splitting the computation at each time step into two steps: transport of the previous
solution on the characteristics and resolution of Stokes-like equations or diffusion-like
equations, e.g. in the framework of projection methods. The characteristics method, which
makes use of direct approximations of the material derivatives, was first introduced in the
finite element framework (see above mentioned references). Adaptation of such an approach to
the spectral methods are more recent [5]. Theoretically, if a backward differentiation scheme is
applied, the characteristics method is an unconditionally stable numerical procedure. As a
result, large time steps can be used in the computations.

However, some difficulties remain, especially when high-order spatial approximations are
involved. First, a difficulty arises from the location of the feet of the characteristics and from
the evaluation of the solution at these points: to retain high-order accuracy, high-order
Lagrange interpolants have to be used, which is expensive in terms of CPU time. Second, if the
spatial discretization is based on a multi-domain or spectral element method, it may be
necessary to trace back the characteristics over several sub-domains or elements. This can
introduce additional errors and furthermore affect the total stability property of the scheme.
Third, no general effective theoretical results are available concerning the analysis of stability
and convergence of the characteristics method, as soon as the transport step is only solved
approximatively.

An alternative method, also based on the splitting transport step–diffusion step but avoiding
the costly interpolations required for the solution evaluations at the feet of the characteristics,
is to use a semi-Lagrangian approach. Such a method can be recast in the general integration
factor splitting scheme generator introduced in Reference [6]. It consists of determining the
transport of the previous solution on the characteristics via solving an advection equation with
appropriate sub-time discretization. The aim of this paper is to verify the properties of the
resulting algorithm, for different problems and using different spectral approaches, in terms of
stability, accuracy and also computational efficiency, with comparisons with standard semi-im-
plicit schemes.

In the first part of the paper (Sections 2–4), the semi-Lagrangian method is introduced, a
few illustrating schemes are described and the sensitive point of the boundary conditions for
the transport step is discussed. Then we give detailed comparisons on the stability and
accuracy between the semi-Lagrangian and semi-implicit schemes. These comparisons are first
performed on one-dimensional problems (Burger’s and advection–diffusion equations), then
for the two-dimensional regularized driven cavity problem, using a spectral element method,
and finally for a three-dimensional cavity problem, using a Chebyshev collocation method. For
this latter test, we also compare the efficiency of the two different approaches in terms of CPU
time with justification of the results by operation counts.

The main notations used in the paper are the following:

– u(x, t): exact solution u at the point x and time t
– un: numerical approximation of u at time t= tn

– x(x, t ; t), 05t5 t : characteristics equation
– ũ : ũ(x, t ; t)�u(x(x, t ; t), t)
– ũ n: approximation of ũ at time t= tn, with t= tn+1

– ū : exact solution of each transport equation solved at each time cycle
– ūm: approximation of ū at sub-time cycle m

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 35: 319–340
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2. THE SEMI-LAGRANGIAN METHOD

For the sake of simplicity, we consider the standard advection–diffusion problem: given n, v
and f, find u such that

(u
(t

+v·9u−nDu= f, x�V, 0B tBT (1)

completed with appropriate initial and boundary conditions. Here V¦Rd (d=1, 2, 3), v=
(61, . . . , 6d) is a velocity field and n is a positive constant diffusion coefficient.

Equation (1) can be rewritten in the form

Du
Dt

−nDu= f (2)

where D/Dt is the material (Lagrangian) derivative, i.e. the total derivative in the streamline
direction v. The basic idea of the classical characteristics method consists in the discretization
of Equation (2), rather than Equation (1). For example, using the first-order backward Euler
(BE1) difference scheme, one obtains

1
Dt

un+1−nDun+1= f n+1+
1
Dt

un(x(x, tn+1; tn)) (3)

where Dt is the time step, n is the time cycle index and x(x, t ; t) is the solution of the
characteristics equation

Á
Ã
Í
Ã
Ä

dx

dt
=v(x, t), 0BtB t

x(x, t ; t)=x
(4)

which defines the trajectory of the particle that reaches the position x at time t.
After the spatial discretization, for each collocation point the classical characteristics method

consists of the following two steps:

(i) location of the foot of the characteristic;
(ii) evaluation of un at this point.

Such a procedure is clearly expensive and, moreover, may be unstable when high-order
approximations are concerned, such as spectral, spectral elements or h–p finite element
methods.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 35: 319–340
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The semi-Lagrangian approach appears to be able to preserve the main advantages of the
characteristics method together with being less expensive in computational time. As shown
hereafter, for the advection–diffusion equation it is also based on the splitting transport
step–diffusion step.

To be more general than in Equation (3), let us introduce the backward Euler approxima-
tion of order Q (BEQ) of Equation (2). Considering the Q consecutive time instants
tn+1−q= tn+1−qDt, q=1, . . . , Q, then we have

a0un+1+a1ũ n+ ···+aQũn+1−Q

Dt
−nDun+1= f n+1 (5)

where the aq are appropriate constants (for example, if Q=3 then a0=
11
6 , a1= −3, a2=

3
2, a3= −1

3). As previously mentioned, un+1 is an approximation of u(x, t) at time t= tn+1

and, for simplification, we have denoted by ũ n+1−q, q=1, . . . , Q approximations of
ũ(x, tn+1; tn+1−q)�u(x(x, tn+1; tn+1−q), tn+1−q).

Clearly, once the ũ n+1−q are known in Equation (5), un+1 results from the resolution of a
diffusion-type problem (the diffusion step). But it is easy to show that the calculation of these
ũ n+1−q may result from the resolution of a set of Q advection equations (the transport step).

Lemma 2.1
Given the function v, we have ũ(x, tn+1; tn)= ū(x, tn+1), the solution at t= tn+1 of the
following advection problem:

Á
Ã
Í
Ã
Ä

(ū(x, t)
(t

= −v(x, t) ·9ū(x, t), tn5t5 tn+1

ū(x, tn)=u(x, tn)
(6)

Proof
Equation (6) is nothing but the material derivation of ū set equal to zero, so that

dū(x(x, tn+1; t), t)
dt

=0

Hence, we have

ū(x(x, tn+1; tn), tn)= ū(x(x, tn+1; tn+1), tn+1)

That is

ũ(x, tn+1; tn)= ū(x, tn+1) 
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Similarly, it is clear that

ũ(x, tn+1; tn+1−q)= ū(x, tn+1), q=2, . . . , Q

where ū(x, tn+1) is the solution at t= tn+1 of the following advection problem:

Á
Ã
Í
Ã
Ä

(ū(x, t)
(t

= −v(x, t) ·9ū(x, t), tn+1−q5t5 tn+1

ū(x, tn+1−q)=u(x, tn+1−q)
(7)

Remark 2.1
We have assumed that for any values of x in V and t5 t, x(x, t ; t) belongs to the domain V.
This is valid for confined domains, such as for any x�G, v(x) ·n(x)=0, where n(x) denotes the
unit outwards normal at point x of the boundary G=(V. For open domains, some feet of the
characteristics may fall outside the computational domain. This point is discussed in Section
4.

3. SCHEMES FOR THE TRANSPORT STEP

If the ũ n+1−q were exactly computed, i.e. if the Q auxiliary advection problems

Á
Ã
Í
Ã
Ä

(ū(x, t)
(t

= −v(x, t) ·9ū(x, t), tn+1−q5t5 tn+1

ū(x, tn+1−q)=u(x, tn+1−q)
(8)

q=1, 2, . . . , Q, were exactly solved, then scheme (5) for the diffusion problem would be
unconditionally stable. However, in practice we can never obtain the exact values of the
ũ n+1−q. In fact, advection problems (8) have to be approximated using a suitable time scheme.
Hereafter, we present possible choices for the time discretization of advection problems (8),
which may be solved with a sub-time step Dt, such as Dt=MDt, where M is a positive integer.
In the case of the Navier–Stokes equations, the velocity field v is also unknown and so we
focus on explicit time schemes. Consequently, stability constraints have to be considered. They
depend on the stability region of the time scheme and on the spectrum of the spatial discrete
operator (see, for example, Reference [7]).

3.1. Adams–Bashforth schemes

Adams–Bashforth schemes are frequently used in the calculation of the convection term of the
Navier–Stokes equations. For advection problems (8), they yield the following generic form:

ūm+1= ūm−Dt(v·9ū)*

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 35: 319–340
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with

(v·9ū)*=

Á
Ã
Ã
Í
Ã
Ã
Ä

v(m) ·9ūm First-order
3
2

v(m) ·9ūm−
1
2

v(m−1) ·9ūm−1 Second-order

23
12

v(m) ·9ūm−
16
12

v(m−1) ·9ūm−1+
5
12
6 (m−2) ·9ūm−2 Third-order

To begin the iterative procedure, i.e. for m=0, one uses ū0=un+1−q. The iteration number
is equal to qM, in such a way that ũ n+1−q= ū qM. The v(m) are the values of v at time
t= tn+1−q+mDt. The full Q-order backward Euler/L-order Adams–Bashforth (BEQ/ABL)
scheme is formally of order min(Q, L) in time, as a result of a consistency analysis successively
applied to Equations (8) and (5). There is no stability restriction on Dt due to the uncondi-
tional stability of the BEQ approximation, but the sub-time step Dt should be determined from
the condition that the spectrum of the spatial discretization of the operator Dtv·9 belongs to
the absolute stability region of the explicit ABL scheme. Note that the spectral Legendre
approximation of the first-derivative operator shows imaginary eigenvalues, so that in this case
we should choose the AB3 scheme because it is stable along some portion of the imaginary
axis. This is no-more true in case of a spectral Chebyshev approximation, where the AB2
scheme should be considered.

Now let us determine ũ n, ũ n−1, . . . , ũ n+1−q in Equation (5) from the AB1 approximation
applied to the sub-problems (8), with the time steps Dt, 2Dt, . . . , QDt respectively, i.e.

ũ n+1−q−un+1−q

qDt
= −vn+1−q ·9un+1−q, 15q5Q

Then, this approach results in

%
Q

q=0

aqun+1−q

Dt
−nDun+1= f n+1− (v·9u)+

where

(v·9u)+ =
� %

Q

q=1

−qaqvn+1−q ·9un+1−q�
which is exactly the standard Q-order semi-implicit BEQ/ABQ scheme, as can be easily
recovered by Taylor developments of u(x, tn+1−q), 15q5Q, at time tn+1.

Let us emphasize that the notation AB here simply refers to the so-called ‘Adams–Bashforth
extrapolation’ (at time tn+1). For example, one obtains
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(v·9u)+ =

Á
Ã
Í
Ã
Ä

vn ·9un First-order
2vn ·9un−vn−1 ·9un−1 Second-order
3vn ·9un−3vn−1 ·9un−1+vn−2 ·9un−2 Third-order

3.2. Runge–Kutta schemes

For illustration, we consider the fourth-order Runge–Kutta (RK4) scheme

Á
Ã
Ã
Ã
Ã
Ã
Ã
Í
Ã
Ã
Ã
Ã
Ã
Ã
Ä

given ūm

R1= −v(m) ·9ūm

R2= −v(m+1/2) ·9
�

ūm+
1
2

DtR1
�

R3= −v(m+1/2) ·9
�

ūm+
1
2

DtR2
�

R4= −v(m+1) ·9(ūm+DtR3)

ūm+1= ūm+
Dt

6
(R1+2R2+2R3+R4)

(9)

where again the v(m) are the values of v at time t= tn+1−q+mDt.
The semi-Lagrangian BEQ/RK4 scheme is formally of order min(Q, 4) in time. As for the

BEQ/ABL, there is no stability restriction on Dt but stability restrictions on Dt. They can be
determined from the absolute stability region of the explicit RK4 scheme, together with the
discrete spectrum of the operator v·9. Theoretically, the RK4 scheme is more stable than the
AB2 or the AB3, due to its larger absolute stability region. This is why it will be used in our
numerical experiments (Section 5). However, the RK4 algorithm needs four consecutive
gradient operations at each sub-time step, rather than two (or three) for the AB2 (or AB3)
scheme.

To conclude this section we apply the semi-Lagrangian BEQ/RK4 scheme to the Navier–
Stokes equations

Á
Ã
Í
Ã
Ä

(u
(t

+ (u·9)u−nDu+9p=0

9 ·u=0
(10)

The BEQ approximation of the material derivative yields the Stokes-like problem

a0un+1+a1ũn+ · · · +aQ ũn+1−Q

Dt
−nDun+1+9pn+1=0,

9 ·un+1=0
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where the previous solutions ũn+1−q are computed by solving the Q advection sub-problems

Á
Ã
Í
Ã
Ä

( ū(x, t)
(t

= −u(x, t) ·9ū(x, t), tn+1−q5t5 tn+1

ū(x, tn+1−q)=u(x, tn+1−q)
(11)

for q=1, 2, . . . , Q using a RK4 scheme. It should be remembered that, for q fixed, ũn+1−q is
an approximation of ū(x, tn+1) (see Lemme 2.1).

The details of the algorithm, with the sub-time step Dt=Dt/M, can be written as follows:

Initialization: m=0, ū0=un+1−q

Step m:

Given ūm

R1= −u(m) ·9ūm

R2= −u(m+1/2) ·9
�

ūm+
1
2

DtR1
�

R3= −u(m+1/2) ·9
�

ūm+
1
2

DtR2
�

R4= −u(m+1) ·9(ūm+DtR3)

ūm+1= ūm+
Dt

6
(R1+2R2+2R3+R4)

End: If m=qM, let ũn+1−q= ūqM, Stop.
Similar notations to previously ones have been used, except that dot products have been

replaced by vector–tensor products. Moreover, the u(m) are only approximate values of u at
time t= tn+1−q+mDt. They must be evaluated by sufficiently high-order extrapolations/in-
terpolations from data at the previous time steps (un, un−1, un−2, . . . ), in order to preserve
the global accuracy of the semi-Lagrangian scheme.

4. BOUNDARY CONDITIONS FOR THE ADVECTION SUB-PROBLEMS

The advection sub-problems (8) that result from the semi-Lagrangian splitting method may
need to be completed with appropriate boundary conditions. In fact, due to the hyperbolicity
of the advection equation, boundary conditions are only needed at the inflow part Gin of the
boundary G, i.e. such as v(x) ·n(x)B0. This case corresponds to open flows. For flows in
confined geometries, such as Gin=¥, no boundary conditions are needed: Especially, if
v�G=0, then explicit schemes like ABL or RK4 yield the correct result on the boundary,
ũ n+1−q=un+1−q.
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The case Gin"¥ is less straightforward and hence has significantly restricted the develop-
ment of characteristics-like methods. Usage of the same boundary conditions for both the
diffusion and transport steps may result in low-order convergence, even if high-order schemes
are used for the splitted sub-problems. Indeed, for each x�Gin, the characteristic necessarily
traces back into the outside of V. Specification of ū(x(x, t ; t), t) by the same value as u(x, t)
on Gin means that the function u(x, t) is locally extended constantly into the exterior of V,
which introduces a discontinuity of the gradiant of u except for the case 9u(x) ·n(x)=0.
However, in practice, such an assumption is less restrictive than it looks, because the
computational domain is generally chosen such that the flow is simple at the inlet part of the
boundary (parallel, stationary, . . . ) and becomes complex inside the domain, e.g. due to the
presence of an obstacle.

In different situations, to recover high-order accuracy of the splitting scheme, it is necessary
to derive better suited inflow boundary conditions for the advection subproblems. The idea
comes from the fact that the Q values of ū, defined in problem (8), on the inflow boundary
x�Gin at time tn+1 are nothing but the value of u at times tn+1−q, along the characteristic x

which passes at x at time tn+1. The ‘natural’ choice for ū on Gin must be the one that allows
u to pass smoothly via the inflow boundary, in such a way that the gradient of u shows no
discontinuity.

These considerations lead us to check a ‘no inflow boundary condition’ approach for the
advection problems. Indeed, the most natural extension of u into the outside of Gin is obtained
using a Taylor development. But this one is in fact automatically achieved by using an explicit
scheme without any additional boundary conditions. Thus, the RK4 scheme applied to
Equation (6) may be viewed as an approach of Taylor developement of u(x(x, tn+1; tn), tn) at
x. To see that readily, we rewrite Equation (9) in the following form, assuming Dt=Dt and no
extrapolation on v(m):

ũ n= ū1=un+Dtvn ·9un+
1
2

(Dtvn ·9)2un+
1
6

(Dtvn ·9)3un+
1
24

(Dtvn ·9)4un

where (vn ·9)k denotes operator multiplication. On another hand, the fourth-order Taylor
developement of u(x(x, tn+1; tn), tn) at x gives

u(x(x, tn+1; tn), tn)=u(x+x(x, tn+1; tn)−x), tn)

=u(x+dx, tn) [where dx=x(x, tn+1; tn)−x ]

=u(x, tn)+dx ·9u(x, tn)+
1
2

(dx ·9)2u(x, tn)+
1
6

(dx ·9)3u(x, tn)

+
1

24
(dx ·9)4u(x, tn)+O(dx)5

Furthermore, if a first-order approximation is simply used for dx, then

dx=Dtvn
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and we have

u(x(x, tn+1; tn), tn)=u(x, tn)+Dtvn ·9u(x, tn)+
1
2

(Dtvn ·9)2u(x, tn)+
1
6

(Dtvn ·9)3u(x, tn)

+
1

24
(Dtvn ·9)4u(x, tn)+O(Dt)5

Thus, the explicit RK4 scheme for the sub-problem (6) is just an approximative form (they are
equivalent when v is constant) of the fourth-order Taylor development of u(x(x, tn+1; tn), tn),
which equals ũ(x, tn+1; tn). In the case of variable velocity v and sub-cycling calculation, more
detailed but similar analysis can be carried out. Nevertheless, as mentioned below, usage of ‘no
inflow boundary conditions’ makes more severe the stability constraints and consequently
affects the main interest of the semi-Lagrangian approach.

5. NUMERICAL RESULTS

The main goal here is to compare the accuracy and stability properties between the semi-
implicit and semi-Lagrangian schemes. This is done by considering one-dimensional and multi-
dimensional problems, using spectral approximations of different kinds. First we consider
one-dimensional problems: two tests are done with the viscous Burger’s equation and one with
the advection–diffusion equation. For semi-Lagrangian methods of different orders and based
on the RK4 algorithm for the transport step, we check the accuracy and also investigate the
problem of the inflow boundary conditions. Then we go to a two-dimensional problem,
namely the so-called regularized driven cavity problem, which we solve by using a spectral
element method. The stability properties of the semi-Lagrangian and semi-implicit methods are
compared, using for the latter different forms of the convective term (convective, divergence
and skew-symmetric forms). Finally, we compute a three-dimensional flow in a confined
cavity, using a Fourier–Chebyshev collocation method. Again we make comparisons of
stability but also consider the computational cost, in terms of CPU time and elementary
operation counts.

In this section we use the notations: SL for semi-Lagrangian, SI for semi-implicit and again
BE for backward Euler, AB for Adams–Bashforth and RK for Runge–Kutta. SL(BE3/RK4)
denotes a semi-Lagrangian splitting scheme based on a third-order implicit backward Euler
approximation for the diffusion step and on a fourth-order explicit Runge–Kutta scheme for
the transport step.

5.1. One-dimensional model problems

5.1.1. Burger’s equation with homogeneous Dirichlet boundary conditions. We consider the
one-dimensional viscous Burger’s equation

(u
(t

+u
(u
(x

−n
(2u
(x2=0

where n is a positive constant.
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The computational domain is taken to be V= ]0, p [ and homogeneous Dirichlet boundary
conditions are imposed. In this case, there is no ‘inflow’into V. It is known (see Reference [8])
that with the initial condition

u(x, 0)=sin(x)

the one-dimensional Burger’s equation has an exact solution, given by

u(x, t)=
4n %

�

n=1

nan e−nn2t sin(nx)

a0+2 %
�

n=1

an e−nn2t cos(nx)
(12)

with

an= (−1)nIn

� 1
2n

�
where In is the exponentially increasing Bessel function of the second kind. In the calculations
we take n=0.05. The profile of the exact solution at time t=1.0 is plotted in Figure 1.

Figure 1. Profile of the exact solution of Equation (12) at t=1.0.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 35: 319–340
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Figure 2. Errors in the L2-norm at time t=1.0 versus the time step Dt for the solution of Equation (12)
of the one-dimensional viscous Burger’s problem, using the SL(BEQ/RK4) scheme with Q=1 (2), Q=2

(+ ), Q=3 ().

We first verify the time discretization accuracy of different SL schemes and then make
comparisons with standard SI ones. The numerical solutions are calculated until the time
t=1.0 with different time steps. In all cases, the spatial approximation consists of K=3
Legendre-based spectral elements with a maximum polynomial degree of N=16. The spatial
discretization errors were checked to ensure no spatial contamination of the time discretization
errors. Figure 2 shows the errors in the L2-norm at t=1.0 given by the SL(BEQ/RK4)
schemes for Q=1, 2, 3 and different time steps. The results were obtained with Dt=Dt, i.e.
no sub-cycling was used. As expected, the scheme is Q-order accurate because the leading-
order error is determined by the backward differentiation.

The SL(BE3/RK4) and the SI(BE3/AB3) schemes are compared in Figure 3. One notes that
the SL scheme gives more accurate results than the SI scheme, probably due to less
leading-order error terms for the former: one leading-order error term rather than two. One
notes also that the SL scheme yields a time approximation order slightly less than the SI one:
the slopes are 2.87 and 3.0 respectively.

5.1.2. Burger’s equation with non-homogeneous Dirichlet boundary conditions. This second test
considers an exact solution of the one-dimensional Burger’s equation, with n=1.0, in a
domain V= ]0, 1[

u(x, t)=
2

1+ex− t (13)
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The non-homogeneous Dirichlet boundary conditions and the initial condition are imposed to
be consistent with the above exact solution. Now x=0 and x=1 are ‘inflow’ and ‘outflow’
points respectively. The solution is again integrated until t=1.0 with different time steps. The
polynomial degree is N=24 with no spectral element decomposition. Again the spatial
discretization errors have been checked to be sure that they may be neglected compared with
the time discretization errors.

Figure 4 shows the errors in the H1-norm at t=1.0 for the SI(BE3/AB3) and SL(BE3/RK4)
schemes, with and without inflow boundary conditions for the advection sub-problems of the
SL scheme. It is noted that with ‘no inflow boundary condition’, the high-order convergence
of the splitting scheme is maintained, while the specification of the non-homogeneous Dirichlet
boundary condition on the inflow boundary for the advection sub-problems results in worse
accuracy. This is in agreement with the previous analysis. Nevertheless, the ‘no inflow
boundary condition’ approach induces stability constraints that are more severe, so that no
gain is obtained when using the SL scheme rather than the SI one.

5.1.3. Ad6ection–diffusion equation. Now we consider the one-dimensional advection–diffusion
equation

(u
(t

+a
(u
(x

−n
(2u
(x2= f

Figure 3. Errors in the L2-norm at time t=1.0 versus the time step Dt for the solution of Equation (12)
of the one-dimensional viscous Burger’s problem, using the SL(BE3/RK4) (2) and the SI(BE3/AB3)

schemes (+ ).
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Figure 4. Errors in the H1-norm at time t=1.0 versus the time step Dt for the solution of Equation (13)
of the one-dimensional viscous Burger’s problem, for the SL(BE3/RK4), with (2) and without (+ )

inflow boundary condition, and for the SI(BE3/AB3) scheme ().

in the computational domain V= ]0, 1[ and where a is a positive constant.
For the exact solution we choose the analytical function

u(x, t)=xa
2p−1+sin(2pt)

2p
sin px (14)

where a is a non-negative constant. The Dirichlet boundary conditions and the initial
condition are taken consistent with the exact solution. The constant a is fixed to a=1. Figure
5 shows the profile of this exact solution at t=1.0 for various values of a.

For all a]0, the solution is vanishing at the two extreme points, x=0 and x=1, which are
an ‘inflow point’ and an ‘outflow point’ respectively. Here again we can expect that using x=0
the same boundary condition for the diffusion step and the transport step will introduce
splitting errors, especially in the case of small a. Indeed, with a constant velocity propagation,
the extension of the solution for values of xB0 does not coincide with the homogeneous
boundary condition. Nevertheless, one can expect that a zero derivative of the exact solution
at the ‘inflow point’ (this is the case when a]1) will limit the splitting errors and even that
these errors will decrease when inceasing the parameter a.

The calculations are done with K=6 spectral elements and a maximum polynomial degree
N=8. We first compare the stability properties of the SL(BE3/RK4) and SI(BE3/AB3)
schemes, as a function of n, using a=2 (but similar results have been observed for a=0 and
a=1). In the present test, no sub-cycling is used, i.e. Dt=Dt. Table I lists the critical time
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Figure 5. Profile of the exact solution defined by Equation (14) at t=1.0 for a=0, 1, 2.

Table I. Critical time steps for the SL and SI schemes for different values of n
(M=1).

SI(BE3/AB3) (Dtc)n SL(BE3/RK4) (Dt %c) Speed-up (Dt %c/Dtc)

Unconditionally stable 0.01990.0011.0 0.00
0.1 0.0790.01 0.01690.001 0.23
0.01 0.00790.001 0.01390.001 1.86

0.002990.0001 0.01390.0010.001 4.48
0.002690.0001 0.01190.0010.0 4.23

steps Dt %c for the SL scheme and Dtc for the SI one for different values of the viscosity. The
speed-up in the last column is calculated as the ratio of Dt %c and Dtc. One observes that for
large values of the viscosity the SI scheme takes advantage on the SL one: in such cases the
diffusion term is dominant and so stabilizes the global schemes. But as expected, when the
viscosity decreases, the speed-up resulting from using the SL scheme increases. The maximal
speed-up is obtained for n:0. Thus, the SL(BE3/RK4) scheme is of interest for small values
of the viscosity.

Note that if sub-cycling is used in the solution of the advection sub-problems, then the
critical time step of the SL scheme can be increased. For n=0.001 and a=2, Table II shows
the influence of the sub-time step number M on stability. As expected, the variation of the
critical time step Dt %c with respect to M is essentially linear. We attribute the slight departure
from linearity to the fact that x=0 is an inflow point.
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Table II. Critical time steps for the SL scheme and speed-up for different
values of the sub-time step number M.

SL(BE3/RK4) (Dt %c)M Speed-up (Dt %c/Dtc)

0.01390.0011 4.48
0.02590.001 8.622
0.03690.0013 12.4
0.04990.001 16.94
0.09690.0018 33.1
0.19090.001 65.516

Figure 6. Errors in the L2-norm at time t=1.0 versus the time step Dt for the solution of Equation (14)
of the one-dimensional advection–diffusion equation, with a=0 (2), a=1 (+ ) and a=2 (), using

the SL(BE3/RK4) scheme.

For investigations on the accuracy, we test the following three cases: a=0, 1, 2. Figure 6
shows the time accuracy order for different values of a using the SL(BE3/RK4) scheme in the
case n=0.001. When a=0, the derivative of the exact solution at the inflow boundary is not
zero and so the homogeneous inflow boundary condition is not compatible with the value of
the solution along the characteristics. The utilization of this inflow boundary condition results,
as mentioned previously, in worse accuracy. But as expected, when a increases, errors
stemming from the inflow boundary condition decrease.

In Table III we compare the time errors obtained respectively with the SL(BE3/RK4) and
the SI(BE3/AB3) schemes for various values of a and two different time steps in the case
n=0.1. One observes that the time error of the SL scheme is larger if a=0. However, the SL
scheme is more accurate than the SI scheme, as soon as a]1.
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Table III. Time errors in L2-norm of the SI and SL schemes for different
values of a and for two time steps.

a SI(BE3/AB3) SL(BE3/RK4)Dt

0 0.364E−060.0025 0.245E−05
1 0.198E−06 0.858E−07
2 0.125E−06 0.428E−07

0 0.226E−040.01 0.111E−03
1 0.127E−04 0.532E−05
2 0.815E−05 0.184E−05

5.2. Regularized dri6en ca6ity problem

The two-dimensional driven cavity problem is considered as a classical test for the Navier–
Stokes numerical solvers. The computational domain is V= ]0, 1[2, at the initial time the fluid
is at rest and we consider for the boundary conditions [9,10], with u= (u, 6)

u(x, 1, 0)= −16x2(1−x)2, 6(x, 1, 0)=0

on the top side and zero on the three other sides, in order to avoid C0 discontinuities of u in
the corners of the cavity. The Reynolds number is defined by Re=Lumax/n, where L and umax

are the dimensioned side length and maximum training velocity respectively. Calculations have
been carried out for Re=400 and Re=1000. In both cases, the flow converges to a steady
state.

The spatial solver is based on the Legendre PN×PN−2 spectral element method (polynomial
approximation for the pressure is two degrees less than for the velocity components). The
Stokes system is solved by the Uzawa procedure, which splits the resolution process for the
pressure and velocity. The pressure system and the velocity system are solved respectively by
the outer/inner conjugate gradient iterative algorithm with preconditioning (see References
[11–14] for more details).

In the case Re=400, we use K=16 uniform spectral elements and a maximal polynomial
degree N=16 in each element and spatial direction. In the case of Re=1000, we take K=100
and N=8. The vorticity (defined as the curl of u) and pressure (up to a constant) fields
obtained for this Reynolds number are shown in the Figure 7. Different time schemes are used
to perform the computations, in an effort to compare their stability properties. For a given
time step Dt, we say that the scheme is stable for this time step if the steady solution is
obtained.

We first compare the stability of the SI(BE3/AB3) and SL(BE3/RK4) schemes without
sub-time step, i.e. Dt=Dt. Then, we vary the number M of the sub-cycles, i.e. we take
Dt=Dt/M, to determine the maximum time step Dt allowed by the SL scheme for a fixed
value of M. Keeping in mind that different discrete forms of the convective term may influence
the stability of the SI scheme, comparisons have been performed for the convective, conserva-
tive and skew-symmetric forms of this term. Table IV lists the critical time steps. It is noted
that the SL scheme allows critical time steps about three times larger than those of the
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Figure 7. Vorticity and pressure fields for the regularised driven cavity problem at the steady state,
Re=1000, −38.745v520.86, −0.04245p50.1223.

Table IV. Critical time steps for the SL and SI schemes, with different treat-
ments of the convection term.

SI(BE3/AB3) SL(BE3/RK4)

Convect.Re Conserv. Skew-symm. Dt=Dt DtBDt
0.0040Re=400 0.0027 0.0033 0.010 0.070 (M=8)
0.0042 0.0030 0.0036Re=1000 0.015 0.16 (M=11)

The data are determined with a relative error up to 10 per cent.

standard SI schemes, even without sub-cycling. As previously mentioned, this results from the
large absolute stability region of the RK4 algorithm. If sub-cycling is used with M=8 in the
case Re=400, the SL scheme allows a critical time step Dt=0.07, which is about 18 times
larger than those of the SI schemes. In the case Re=1000, if using sub-cycling number
M=11, the maximum time step of the SL scheme can reach 0.16 for the SL(BE3/RK4)
scheme. This value is 38 times larger than the one obtained with the SI(BE3/AB3) scheme.

5.3. Three-dimensional ca6ity flow problem

For the comparison of the SL and SI schemes, the definition of the speed-up as the ratio
Dt %c/Dtc is only justified if the computation time of the transport step can be neglected. This is
generally true, since the diffusion step is treated implicitly, whereas the transport step is treated
explicitly. This is still more true for the Navier–Stokes equations, when using the Uzawa
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algorithm to solve the Stokes-like problem, as done previously for the two-dimensional
regularized driven cavity flow.

When a direct method is used to solve the Stokes problem, or when projection methods are
involved, efficient solvers can be developed for the diffusion step. Then, defining the speed-up
as the ratio Dt %c/Dtc is no longer justified. This situation is the one met in this section, where
it is shown that the SL scheme can still take advantage on the SI one, but in a less convincing
way.

The computational domain is the three-dimensional cavity V= ]−0.5, 0.5[3 with one
periodic direction (z-periodic direction). At the initial time, the fluid is at rest and the
three-dimensional flow results from a non-homogeneous Dirichlet condition at the face
x= −0.5; with u= (u, 6, w)

6(−0.5, y, z)= (1−4y2)2 sin
�

p
� z

0.5
�1/3�

, u(−0.5, y, z)=w(−0.5, y, z)=0 (15)

On the three other faces also parallel to the z-axis, no-slip conditions are considered.
The approximation in the z-periodic direction makes use of a Fourier method, in such a way

that at each time step one has to solve a set of two-dimensional Stokes problems. To this end
we use a PN×PN (polynomials of same degree for the pressure and the velocity components)
Chebyshev collocation method. We first solve a Poisson equation for the pressure and then
elliptic Helmholtz equations for the velocity components. An influence matrix technique is
used to determine the boundary conditions for the pressure, in such a way that the resulting
velocity field is perfectly divergence-free (see Reference [15] for more details). For the spatial
discretization we use a 61×61×60 grid, i.e. N=60 in the x- and y-directions and 30 Fourier
modes.

For the advection sub-problems, appropriate boundary conditions are a priori needed at the
two faces orthogonal to the z-periodic direction, since there is flow entering into the cubic
domain through these faces. This would be especially complex, since the inflow and outflow
parts of the boundary may be time-dependent. However, a simple analysis shows that the
Fourier first-derivative operator has only imaginary eigenvalues, as a result, RK4 scheme
applied to the corresponding one-dimensional model problem may be stable for both negative
and positive velocity, so that no boundary conditions are in fact required. This was further-
more confirmed by our numerical experiences.

The computations are carried out for a Reynolds number Re=10000, where Re is as
previouly based on the maximum of the velocity at the training face and on the side-lenght of
the cubic cavity. The resulting flow is such that no steady state is reached, i.e. the flow remains
unsteady. The comparison of the SL and SI schemes is performed starting from the same initial
condition, i.e. the state obtained at t=25 with the SI-based code. Figure 8 shows isosurfaces
obtained for the levels u=90.02 of the u-component of the velocity.

We compare the stability properties of the SI(BE2/AB2) and SL(BE2/RK4) schemes. The
critical time steps are found to be Dtc= (0.6490.01)×10−2 and Dt %c= (3.490.1)×10−2

respectively. Thus the ratio Dt %c/Dtc approximately equals 5.31.
Accuracy comparisons are difficult to perform, since the exact flow is not known. Neverthe-

less, one may expect that for a given time step the SL scheme is slightly more accurate, due to
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Figure 8. Isosurfaces u=90.02 of the u-component of the velocity for the three-dimensional cavity flow
problem, t=25, Re=10000.

the presence of only one leading error term rather than two for the SI scheme. However, in
order to take advantage of the SL scheme, a five times larger time step has to be used, resulting
in a loss of time accuracy of about 25.

As mentioned above, a comparison of the computational costs of the two schemes does not
reduce here to the ratio of the critical time steps: the speed-up must take into account the fact
that the SL scheme is more time-consuming than the SI one. This is why we first evaluate the
numbers of elementary operations and then confirm these evaluations with CPU time
measurements. For three-dimensional problems, the calculation of the convective term with the
SI scheme requires 3×3, i.e. 9, velocity component differentiations, at each time step, while
the SL one requires 3×4×9, i.e. 108, differentiations. Hence, the total operation numbers
needed to treat the convection term are about 9N4 for the SI scheme and 108N4 for the SL
scheme. The resolution of the Stokes-like problem with the present direct method is estimated
to need 34N4 operations. Therefore, the total cost at each time step is 9N4+34N4 for the SI
scheme and 108N4+34N4 for the SL scheme. The speed-up obtained from using the SL
scheme is then
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9N4+34N4

108N4+34N4×5.31=1.61

With a SGI-R10000 workstation, the CPU time to compute the convection term at each time
step is about 2 s by the SI(BE2/AB2) scheme, to be compared with 22 s by the SL(BE2/RK4)
scheme. The ratio equals 11, which is in satisfactory agreement with the previous evaluation,
108/9=12. The resolution of the Stokes-like problem needs about 8 s.

The realized speed-up is therefore

2 s+8 s
22 s+8 s

×5.31=1.77

All the above results have been obtained without sub-cycling in the advection sub-problems. If
sub-cycling is used, the speed-up can be further increased. For example, with M=Dt/Dt=2,
the critical time step reaches 0.066, and 41 s are now required by the RK4 algorithm. In this
case, the effective speed-up is

2 s+8 s
41 s+8 s

×
0.066

0.0064
=2.10

However, one may now expect a loss of two orders of magnitude in the time accuracy of the
calculation.

6. CONCLUSION

The direct numerical simulation of high-Reynolds number flows remains a challenge for the
numerical methods, due to the severe stability constraints induced by the non-linear convective
term. The classical characteristics method allows to relax these constraints, but is too much
CPU time-consuming in the framework of spectral method. This is why semi-Lagrangian
methods, which do not require high-order interpolations, are attractive. Then it was of interest
to make comparisons with the standard semi-implicit methods. In all the considered cases,
semi-Lagrangian schemes based on backward differentiation for the diffusion step and
fourth-order Runge–Kutta method for the transport step, have permitted a non-negligible
speed-up, in comparison with semi-implicit schemes based on backward Euler differentiation
and Adams–Bashforth extrapolation. Nevertheless, improvements of the explicit scheme used
for the transport step, in terms of stability properties and computational cost (see, for example,
Reference [16]), would permit to still increase the speed-up, especially when the calculation
time of the convective term cannot be neglected.
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